Refine Your Search

Topic

Author

Search Results

Journal Article

Development of a Transient Thermal Analysis Model for Engine Mounts

2016-04-05
2016-01-0192
Engine mount is one of the temperature sensitive components in the vehicle under-hood. Due to increasing requirements for improved fuel economy, the under-hood thermal management has become very challenging in recent years. In order to study the effects of material thermal degradation on engine mount performance and durability; it is required to estimate the temperature of engine mount rubber during various driving conditions. The effect of temperature on physical properties of natural rubber can then be evaluated and the life of engine mount can be estimated. In this paper, a bench test is conducted where the engine mount is exposed to a step change in the environment around it, and the temperature of the rubber section is recorded at several points till a steady state temperature is reached. A time response curve is generated, from which a time constant is determined.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Journal Article

Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine

2016-04-05
2016-01-0806
Interest in natural gas as a fuel for light-duty transportation has increased due to its domestic availability and lower cost relative to gasoline. Natural gas, comprised mainly of methane, has a higher knock resistance than gasoline making it advantageous for high load operation. However, the lower flame speeds of natural gas can cause ignitability issues at part-load operation leading to an increase in the initial flame development process. While port-fuel injection of natural gas can lead to a loss in power density due to the displacement of intake air, injecting natural gas directly into the cylinder can reduce such losses. A study was designed and performed to evaluate the potential of natural gas for use as a light-duty fuel. Steady-state baseline tests were performed on a single-cylinder research engine equipped for port-fuel injection of gasoline and natural gas, as well as centrally mounted direct injection of natural gas.
Technical Paper

Methodology to Determine the Effective Volume of Gasoline Particulate Filter Technology on Criteria Emissions

2016-04-05
2016-01-0936
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
Technical Paper

Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni

2016-04-05
2016-01-0421
This research studies the transformation kinetics of austempered ductile iron (ADI) with and without nickel as the main alloying element. ADI has improved mechanical properties compared to ductile iron due to its ausferrite microstructure. Not only can austempered ductile iron be produced with high strength, high toughness and high wear resistance, the ductility of ADI can also be increased due to high carbon content austenite. Many factors influence the transformation of phases in ADI. In the present work, the addition of nickel was investigated based on transformation kinetics and metallography observation. The transformation fractions were determined by Rockwell hardness variations of ADI specimens. The calculation of transformation kinetics and activation energy using the “Avrami Equation” and “Arrhenius Equation” is done to describe effects of nickel alloy for phase reactions.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

Optimization of Vehicle Air Intake System and Air Charge Temperature for Better Engine Performance and Fuel Economy

2016-04-05
2016-01-0206
An Air intake system (AIS) is a duct system which leads the airflow going into the internal combustion engine. Combustion requires oxygen, and the more oxygen is provided into the combustion process the more power it will produce. The lower the air temperature, the higher its density, and hence there is more oxygen in a unit volume. The quality of air entering engine can be measured with the air temperature. AIS design and routing influence the air charge temperature (ACT) at intake manifold runners and ACT is normally measured at AIS throttle body in reality. Higher ACT lead to inefficient combustion and can lead to spark retard. Optimization of AIS designs and reduction of ACT can improve engine performance and vehicle fuel economy. High ACT can be a result of two different phenomena: Recirculation - Hot air from the underhood environment ingested into the dirty side of the air intake system.
Technical Paper

3D Simulation Models Simplified to 2D Planar/Axisymmetric Problems in Automotive Structures

2016-04-05
2016-01-0397
In automotive FEA analysis, there are many components or assemblies which can be simplified to two-dimensional (2D) plane or axisymmetric analytical problems instead of three-dimensional (3D) simulation models for quick modeling and efficient analysis to meet the timing in the design development process, especially in the advanced design phase and iteration studies. Even though some situations are not perfectly planar or axisymmetric problems, they may still be approximated in 2D planar or axisymmetric models, achieving results accurate enough to meet engineering requirements. In this paper, the authors have presented and summarized several complex 3D analytical situations which can be replaced by simplified plane axisymmetric models or 2D plane strain analytical models.
Technical Paper

Integrated Engine Performance and Valvetrain Dynamics Simulation

2016-04-05
2016-01-0483
Valvetrain dynamics modeling and engine combustion modeling are often carried out independently. As a result, the interaction between these two physical responses may not be accurately assessed. The objective of this work is to understand the impact that robust valve timing simulations, implemented using a fully coupled valve train dynamics and engine performance model, have on engine performance prediction. The integrated simulation and detailed technical approach are discussed through the presentation of an example implementation. An I4 engine model is developed in which engine performance and valvetrain dynamics modeling are coupled. A benefit of this multi-physics approach is that it reduces reliance on empirically derived estimates of valve lash in favor of physical modeling of engine valvetrain dynamics that predicts lash during engine performance modeling.
Technical Paper

Evaluating Major Parasitic Power Losses in IC Engines

2016-04-05
2016-01-0489
The mathematical models that predict friction losses for an internal combustion (IC) engine are described in this paper. These models are based on a combination of fundamental physics and empirical results. These include predictions of losses arising from friction and viscous fluid motion associated with the relative movement of solid surfaces within a piston assembly, the cranktrain, and valvetrain components. The engine friction losses are defined in the context of the geometries of the particular components within an IC engine. Details of these formulations are given, including novel geometry-related coefficients. Different regimes of lubricated friction are considered. In order to establish the model fidelity and robust solution methodology, the mathematical models are validated against engine friction tests. Utilization of these models enables practical solutions to the development of new low friction IC engines that leads to improved engine mechanical efficiency and fuel economy.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
Technical Paper

Powertrain Metric to Assess Engine Stop Start Refinement

2015-06-15
2015-01-2186
Every automaker is looking for ways to improve the fuel economy of its vehicle fleet to meet the EPA greenhouse gas regulation, which translates into 2025 Corporate Averaged Fuel Economy of 54.5 mpg. Engine Stop Start technology will improve the fuel economy of the vehicle by shutting down the engine when the vehicle is stationary. While this is an established technology in Europe, it is beginning to gain momentum in North America, where NVH refinement is a stronger consideration. To utilize the fuel economy benefits of Stop Start technology in the North American market, the technology must be seamlessly incorporated into the vehicle. This paper gives an overview of characterizing an auto start based on the features of a few Powertrain-system-level metrics. Following the fundamentals of NVH, (Source, Path and Receiver) the receiver touch points will be less perceptible to vibration, if the powertrain-system source is made smoother.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
Technical Paper

Analytical Mechanical Loss Model for Planetary Gearset

2015-04-14
2015-01-1090
This paper presents a method to model the transmission mechanical power loss for the unloaded and loaded losses on a planetary gearset. In this analysis, the transmission losses are differentiated into losses due to fluid churning; losses due to fluid shear between the walls of rotating parts; losses due to fluid shear between motors' stator and rotor and losses due to the meshing of gearsets while transferring torque. This transmission mechanical power loss model is validated with test data that was obtained by independently testing an eVT transmission. The mechanical power loss model mentioned in this paper was constructed to accurately represent the test setup. From the correlation with the test data, it can be inferred that the transmission losses can be modeled within an error of 3% in the relevant region of output velocity for use in performance and fuel economy simulations.
X